『Vanishing Gradients』のカバーアート

Vanishing Gradients

Vanishing Gradients

著者: Hugo Bowne-Anderson
無料で聴く

このコンテンツについて

A podcast about all things data, brought to you by data scientist Hugo Bowne-Anderson. It's time for more critical conversations about the challenges in our industry in order to build better compasses for the solution space! To this end, this podcast will consist of long-format conversations between Hugo and other people who work broadly in the data science, machine learning, and AI spaces. We'll dive deep into all the moving parts of the data world, so if you're new to the space, you'll have an opportunity to learn from the experts. And if you've been around for a while, you'll find out what's happening in many other parts of the data world.© 2025 Hugo Bowne-Anderson
エピソード
  • Episode 1: Introducing Vanishing Gradients
    2022/02/16
    In this brief introduction, Hugo introduces the rationale behind launching a new data science podcast and gets excited about his upcoming guests: Jeremy Howard, Rachael Tatman, and Heather Nolis! Original music, bleeps, and blops by local Sydney legend PlaneFace (https://planeface.bandcamp.com/album/fishing-from-an-asteroid)!
    続きを読む 一部表示
    5 分
  • Episode 54: Scaling AI: From Colab to Clusters — A Practitioner’s Guide to Distributed Training and Inference
    2025/07/18
    Colab is cozy. But production won’t fit on a single GPU. Zach Mueller leads Accelerate at Hugging Face and spends his days helping people go from solo scripts to scalable systems. In this episode, he joins me to demystify distributed training and inference — not just for research labs, but for any ML engineer trying to ship real software. We talk through: • From Colab to clusters: why scaling isn’t just about training massive models, but serving agents, handling load, and speeding up iteration • Zero-to-two GPUs: how to get started without Kubernetes, Slurm, or a PhD in networking • Scaling tradeoffs: when to care about interconnects, which infra bottlenecks actually matter, and how to avoid chasing performance ghosts • The GPU middle class: strategies for training and serving on a shoestring, with just a few cards or modest credits • Local experiments, global impact: why learning distributed systems—even just a little—can set you apart as an engineer If you’ve ever stared at a Hugging Face training script and wondered how to run it on something more than your laptop: this one’s for you. LINKS Zach on LinkedIn (https://www.linkedin.com/in/zachary-mueller-135257118/) Hugo's blog post on Stop Buliding AI Agents (https://www.linkedin.com/posts/hugo-bowne-anderson-045939a5_yesterday-i-posted-about-stop-building-ai-activity-7346942036752613376-b8-t/) Upcoming Events on Luma (https://lu.ma/calendar/cal-8ImWFDQ3IEIxNWk) Hugo's recent newsletter about upcoming events and more! (https://hugobowne.substack.com/p/stop-building-agents) 🎓 Learn more: Hugo's course: Building LLM Applications for Data Scientists and Software Engineers (https://maven.com/s/course/d56067f338) — https://maven.com/s/course/d56067f338 Zach's course (45% off for VG listeners!): Scratch to Scale: Large-Scale Training in the Modern World (https://maven.com/walk-with-code/scratch-to-scale?promoCode=hugo39) -- https://maven.com/walk-with-code/scratch-to-scale?promoCode=hugo39 📺 Watch the video version on YouTube: YouTube link (https://youtube.com/live/76NAtzWZ25s?feature=share)
    続きを読む 一部表示
    41 分
  • Episode 53: Human-Seeded Evals & Self-Tuning Agents: Samuel Colvin on Shipping Reliable LLMs
    2025/07/08
    Demos are easy; durability is hard. Samuel Colvin has spent a decade building guardrails in Python (first with Pydantic, now with Logfire), and he’s convinced most LLM failures have nothing to do with the model itself. They appear where the data is fuzzy, the prompts drift, or no one bothered to measure real-world behavior. Samuel joins me to show how a sprinkle of engineering discipline keeps those failures from ever reaching users. We talk through: • Tiny labels, big leverage: how five thumbs-ups/thumbs-downs are enough for Logfire to build a rubric that scores every call in real time • Drift alarms, not dashboards: catching the moment your prompt or data shifts instead of reading charts after the fact • Prompt self-repair: a prototype agent that rewrites its own system prompt—and tells you when it still doesn’t have what it needs • The hidden cost curve: why the last 15 percent of reliability costs far more than the flashy 85 percent demo • Business-first metrics: shipping features that meet real goals instead of chasing another decimal point of “accuracy” If you’re past the proof-of-concept stage and staring down the “now it has to work” cliff, this episode is your climbing guide. LINKS Pydantic (https://pydantic.dev/) Logfire (https://pydantic.dev/logfire) Upcoming Events on Luma (https://lu.ma/calendar/cal-8ImWFDQ3IEIxNWk) Hugo's recent newsletter about upcoming events and more! (https://hugobowne.substack.com/p/stop-building-agents) 🎓 Learn more: Hugo's course: Building LLM Applications for Data Scientists and Software Engineers (https://maven.com/s/course/d56067f338) — next cohort starts July 8: https://maven.com/s/course/d56067f338 📺 Watch the video version on YouTube: YouTube link (https://youtube.com/live/wk6rPZ6qJSY?feature=share)
    続きを読む 一部表示
    45 分

Vanishing Gradientsに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。