
BITESIZE | Why Your Models Might Be Wrong & How to Fix it, with Sean Pinkney & Adrian Seyboldt
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Today’s clip is from episode 133 of the podcast, with Sean Pinkney & Adrian Seyboldt.
The conversation delves into the concept of Zero-Sum Normal and its application in statistical modeling, particularly in hierarchical models.
Alex, Sean and Adrian discuss the implications of using zero-sum constraints, the challenges of incorporating new data points, and the importance of distinguishing between sample and population effects.
They also explore practical solutions for making predictions based on population parameters and the potential for developing tools to facilitate these processes.
Get the full discussion here.
- Intro to Bayes Course (first 2 lessons free)
- Advanced Regression Course (first 2 lessons free)
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!
Visit our Patreon page to unlock exclusive Bayesian swag ;)
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.